In the previous section, you studied measures of central tendency. It is important to note that distributions of continuous data can also be characterized and compared by considering their measures of spread.

PART A-What is the Interquartile Range?
To define these measures of spread, let's consider a familiar context—a class set of MCR 3U midterm marks. The marks are as follows:

| 90 | 90 | Using this set of data, determine each of the following: |
| :--- | :--- | :--- |
| 87 | 74 |  |
| 80 | 77 | 1. the range |
| 75 | 90 | 2. the quartiles |
| 83 | 67 | 3. the Interquartile range, and |
| 75 | 77 | 4. Create a box-and-whisker plot (e.g., on p4 of this document) to |
| 78 | 92 | represent the spread of data using Fathom. Copy the graphic as a <br> 76 |
| picture and then paste into the space provided. Label the graphic <br> with the following: min, max, Q1, Q2, Q3, range, IQR. |  |  |

## Solution:

1. 
2. 
3. 
4. mcr 3u small

Now consider the set of marks from another semester's MCR 3U class. Repeat steps 1 to 4 from above.

## Solution:

| 79 | 75 |
| :--- | :--- |
| 79 | 77 |
| 76 | 79 |
| 78 | 82 |
| 72 | 81 |
| 85 | 72 |
| 79 | 79 |
| 74 | 77 |
| 74 | 81 |
| 76 | 77 |
| 81 | 63 |
| 63 | 69 |
| 86 | 67 |
| 72 | 84 |

78
80

Repeat steps 1 to 4 applied to first data set
1.
2.
3.
4.


Task 1: Compare both 3 U classes on the basis of their measures of spread. Write your ideas in the space provided below.

Part B-A Standard Measure of Spread
Problem 1: Let's say that both classes had equal measures of spread. How then could we compare them?

- The measure of spread we use should take into consideration the distance each piece of data is from the mean-these are called deviations.
- Values that are less than the mean $(x \prec x)$ have negative deviations $(x-\bar{x}<0)$; those greater than the mean, positive $(x-x>0)$.
- As the deviations from the mean get larger, so does the spread of the data.
- If you add up all the deviations for a data set, they will cancel out. Statisticians have shown that a root-mean-square quantity is a useful measure of spread. The standard deviation is the square root of the mean of the squares of the deviations.
- The lowercase Greek letter sigma, $\sigma$, represents the standard deviation.

Task 2: Calculate the standard deviation for both classes. Compare these values and discuss the significance of the results.

## Solution:

To move the task forward, I have calculated the standard deviation for the larger set of data. The values are as follows:

Mean $=76 \%$ Standard deviation: $5.72 \%$
Continue the solution by calculating the standard deviation for the smaller set of data. Note: It is sometimes helpful to organize your data in table like the one provided below.

| Mark | $x-\bar{x}$ | $(x-\bar{x})^{2}$ |
| ---: | :--- | :--- |
| 90 |  |  |
| 87 |  |  |
| 80 |  |  |
| 75 |  |  |
| 83 |  |  |
| 75 |  |  |
| 78 |  |  |
| 76 |  |  |
| 90 |  |  |
| 74 |  |  |
| 77 |  |  |
| 90 |  |  |
| 67 |  |  |
| 77 |  |  |
| 92 |  |  |
| 80 |  |  |

Standard deviation, $\sigma=$
Mean, $\bar{x}=$

As mentioned before, the smaller the standard deviation or the variance, the more compact the data set.

To remain within the reach of this course, we will calculate the standard deviation for both grouped and ungrouped population data. The formulas are as follows:

Standard deviation for Ungrouped data: Standard deviation for Grouped data:

$$
\sigma=\sqrt{\frac{\sum\left(x_{i}-x\right)^{2}}{n}} \quad \sigma=\sqrt{\frac{\sum f_{i}\left(x_{i}-x\right)^{2}}{n}}
$$

## PART C-Consolidate Your Understanding

E.g. 1., For one week, the Math twins-lluv and Uluv-record how many questions they successfully answer each day during math class. They find that lluv answers $16,17,16,15$, and 14 questions. Uluv answers 14, 18, 22, 16, and 8 questions. Use statistical measures to determine which worker is consistent in answering questions. (For reference, see E.g., 2, p165)

| $X$ | $x-\bar{x}$ | $(x-\bar{x})^{2}$ |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  | $\sum(x-\bar{x})^{2}=$ |  |


| $X$ | $x-\bar{x}$ | $(x-\bar{x})^{2}$ |
| :---: | :---: | :---: |
|  |  |  |
|  |  |  |
|  |  |  |
|  |  |  |
|  | $\sum(x-\bar{x})^{2}=$ |  |

E.g., 2, A railway line gives out bags of peanuts to its travelers, and each bag does not always contain the same number of peanuts. The following table represents a sample of 31 bags showing the number of peanuts per bag. Calculate the standard deviation for the sample of grouped data and describe its significance.

| Number of <br> Peanuts | 28 | 29 | 30 | 31 | 32 | 33 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 2 | 5 | 10 | 9 | 4 | 1 |


| $x$ | $x-\bar{x}$ | $f(x-\bar{x})^{2}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

## Part D—Constructing Visual Displays for Measures of Spread

## Task 3:

- Using the statistical software program, Fathom, complete the assignment provided by your teacher-"Box Plots and Transformations"-up to and including Q13 on p27.
- The goals of the assignment are to have you learn how to construct and interpret percentile plots, box-and-whisker plots (measures of spread; example below) and to introduce you to the idea of the number of standard deviations that seem to capture the majority of a distribution's data.
- The assignment also requires that you use a pre-made Fathom file called "Census at School".
- These files, along with the instructions for your assigned questions, are posted to the course website, Unit 3 sub-page.



## Task 4:

Complete the following practice problems:

- p168 \#1 (also create a box \& whisker plot for this problem), 4, 6, 9, 10, 13
- Fathom will be sent home with students such that they have the capability of completing assignment and project work at home also.
AppendixPart A Data Sets for Importing into Fathom
MCR 3U-Class 1 Data Set MCR 3U-Class 2 Data Set
90 ..... 79
87 ..... 79
80 ..... 76
75 ..... 78
83 ..... 72
75 ..... 85
78 ..... 79
90 ..... 74
74 ..... 74
77 ..... 76
90 ..... 81
67 ..... 63
77 ..... 86
92 ..... 72
80 ..... 7880
75777982817279
77

81
77
63
69
67
84

