Compound Interest

Learning Goal

Minds on Math...Compound Interest Formula

Consider the following statement:

A student puts \$1000 of their earnings into an investment that pays 4.8% (i.e., 0.048) per year, compounded annually (i.e., interest is paid once at the end of each year) for 3 years. How much will their investment be worth at the end of 3 years?

Drag the values from above into the compound interest formula below.

Minds on Math...Calculator Operations

Organize the following calculator keystrokes to produce the correct answer of **\$1151.02**.

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7
1.048	y×	3	=	X	\$1000	_

=

3

X

=

1.048

yx

\$1000

Minds on Math...The Mathematical Solution

A student puts \$1000 of their earnings into an investment that pays 4.8% (i.e., 0.048) per year, compounded annually (i.e., interest is paid once at the end of each year) for 3 years. How much will their investment be worth at the end of 3 years?

Solution:

$$A = P(1 + i)^n$$
$$= $1000(1.048)^3$$

= \$1151.02

Therefore, in 3 years, there will be \$1151.02 in the account.

Minds on Math...Detecting Compounding Frequencies

What's the relationship of $$1000(1.048)^3$ to the remaining expressions for the amount, A, of an investment (or loan)?

	Relationship to \$1000(1+0.048)3	Compounding Frequency
\$1000(1+0.024)6		
\$1000(1+0.012)12		
\$1000(1+0.004) ³⁶		
\$1000(1+0.002)72		

Reflection: Imagine how the statement would read using the various compounding frequencies (see table).

A student puts \$1000 of their earnings into an investment that pays 4.8% (i.e., 0.048) per year, compounded annually (i.e., interest is paid once at the end of each year) for 3 years. How much will their investment be worth at the end of 3 years?

Minds on Math...Detecting Compounding Frequencies

What's the relationship of \$1000(1.048)³ to the remaining expressions for the amount, *A*, of an investment (or loan)?

	Relationship to \$1000(1+0.048) ³	Compounding Frequency
\$1000(1+0.024)6	$$1000 \left(1 + \frac{0.048}{2}\right)^{3 \times 2}$	semi-annually; twice per year
\$1000(1+0.012)12	$$1000 \left(1 + \frac{0.048}{4}\right)^{3\times4}$	quarterly; four times per year
\$1000(1+0.004) ³⁶	$$1000 \left(1 + \frac{0.048}{12}\right)^{3 \times 12}$	monthly; every month
\$1000(1+0.002)72	$$1000 \left(1 + \frac{0.048}{24}\right)^{3 \times 24}$	semi-monthly; twice per month

Reflection: Imagine how the statement would read using the various compounding frequencies (see table).

A student puts \$1000 of their earnings into an investment that pays 4.8% (i.e., 0.048) per year, compounded annually (i.e., interest is paid once at the end of each year) for 3 years. How much will their investment be worth at the end of 3 years?

Consolidate: Compound Interest Formula & Compounding Frequencies

Key Ideas

Take Action: Example 1-Comparing Plans

Problem

You're planning on borrowing \$3000. You have two options:

Option 1: \$3000 for five years at 9% compounded semi-annually

Option 2: \$3000 for five years at 8.6% per year, compounded quarterly

Which option will you choose? Justify your choice.

$$A = #3000 (1 + \frac{0.09}{2})^{5 \times 2}$$

$$= #3000 (1.045)^{10}$$

$$= #4658.91$$

$$A = $3000 (1 + \frac{0.086}{4})^{5 \times 4}$$

$$= $3000 (1.0215)^{20}$$

$$= $4590.80$$

Conclusion: Go with Option ; it produces more interest.

Take Action: Example 2-Doubling Time

Problem

How long will it take a sum of money to double at 4.8% per year, compounded *annually*?

Solution

n	\$1(1.048) ⁿ	>, <, = to \$2
10		
15		

Conclusion

Therefore, it takes _____ years for money to double at 4.8% compounded annually.

Take Action: Example 2-Doubling Time

Problem

How long will it take a sum of money to double at 4.8% per year, compounded *annually*?

Solution

Let's say that P = \$1. This means that the future value must be A = \$2. So the compound interest equation is written as $2 = 1(1.048)^n$.

n	\$1(1.048) ⁿ	>, <, = to \$2
10	1.60	<
15	2.02	>
14	1.92	<
14.5	1.97	<
14.8	2.00	=

<u>Conclusion</u>

Therefore, it takes 14.8% years for money to double at 4.8% compounded annually.

Consolidate Your Understanding: PRACTICE

p432 #2
p433 #6
p434 #10, 14