Compound Interest

Learning Goal

How will the approach to solving need to change?

Consider these scenarios. Consider how the approach to solving will need to change.

Scenario 1:

E.g., Challis recently started a part-time job in order to build up her savings account. Her most recent paycheck, \$400, will be deposited into an account that earns 3.6% per year, compounded annually.

Problem: How much will Challis have saved at the end of two years?

Scenario 2:

E.g., Challis recently started a part-time job in order to build up her savings account. Her most recent paycheck, \$400, will be deposited into an account that earns 3.6% per year, compounded monthly.

Problem: How much will Challis have saved at the end of two years?

Scenario 1:

$$A = P(1+i)^{n}$$

$$= 400(1+0.036)^{2}$$

$$= 400(1.036)^{2}$$

$$= 429.32$$

Scenario 2:

$$A = 17/1+i)^{n}$$

$$= 400(1+\frac{0.036}{12})^{2\times 12}$$

$$= 429.82$$

Calculating Growth Factors & Compounding Periods

Assume #	of yrs=		
Annual Interest Rate	Compounding Frequency	Growth Factor per Compounding Period, <i>i</i>	Number of Compounding Periods, <i>n</i>
3.5%	Annual	0.035	1 x 4 = 4
6%	Semi-annual	$\frac{0.06}{2} = 0.0$	3 2 x4 = 8
2.8%	Quarterly	<u>0.028</u> = 0.07	- 4 x41-16
19.9%	Monthly	0.109	4412=4

NB: Semi-annual = twice per year; quarterly = four times per year; monthly = 12 times per year

Practice Problems			
a) \$2000 is invested at 3% per year, compounded semi-annually, for two years			
b) \$15 000 is invested at 4.8% per year, compounded monthly, for four years.			
c) How much interest was earned by each investment?			

Follow-up Practice:

3c: p433 #8abc, 9