Conditional Probability

Minds on Math: Classifying Compound Events
Definition:
Compound events are made up of two or more simple events. The following are examples of compound events:
a) flipping a coin and then rolling a die to see if you get heads (or tails) and (#)
b) flipping a coin three times to see if you get (#) heads (or tails) in a row
c) drawing two cards from a deck, one at a time, to see if you get two
Problem 1 Study the problems, above, such that you are able to classify them according to your own criteria.

Minds on Math (contd.)

Summary

- The events in a)...are independent
- The events in b)...are independent
- The events in c)...are dependent

Recall

In general, when a compound event occurs, its probability is the product of the individual simple event probabilities. The formula below calculates the probability of independent events.

$$P(A \cap B) = P(A) \times P(B)$$

Problem 2

Solve the problem in c) where you're trying to determine the probability of drawing two aces in a row (assume that the first card is not returned to the deck). Space, for your solution, has been provided on the next page.

	Solution to c):			
	Let A be the event that the first card drawn is an ace; B, the second card drawn is also an ace.			
\	(Note that the goal of the problem is to find the probability that both the first AND second cards drawn are acesi.e., determine P(A and B).)			
\(\rightarrow\)	As per the multiplicative rule for independent events, $P(A \cap B) = P(A) \times P(B)$			
<u> </u>	In this example, P(A) = 4/52. Thus,			
7	$P(A \cap B) = \frac{4}{52} \times P(B)$			
	By this line of reasoning, P(B), given that A has already occurred, is given by			
	$P(B given A) = \frac{3}{51}$			

Carrying these ratios forward, the following probability is obtained:		
$P(A \cap B) = P(A) \times P(B \text{ given } A)$		
$=\frac{4}{52}\times\frac{3}{51}$		
$=\frac{1}{13}\times\frac{1}{17}$		
$=\frac{1}{221}$		
Therefore, the probability of drawing two aces in a row, given that the first card drawn is not replaced, is 1/221.		

	Solution to c):				
	Let A be the event that the first card drawn is an ace; B, the second card drawn is also an ace.				
\ <u></u>	(Note that the goal of the problem is to find the probability that both the first AND second cards drawn are acesi.e., determine P(A and B).)				
	As per the multiplicative rule for independent events,				
7	$P(A \cap B) = P(A) \times P(B)$				
4_	In this example, P(A) = 4/52. Thus,				
	$P(A \cap B) = \frac{4}{52} \times P(B)$				
Image: Control of the	But, the outcome of event B <i>is dependent upon</i> the outcome of event A. Thus, when calculating the probability of B, we must restrict the sample space to that of B only, where there are only 51 cardsnot 52.				
	By this line of reasoning, P(B), given that A has				
	already occurred, is given by $P(B \ given \ A) = \frac{3}{51}$				

Carrying t	Carrying these ratios forward, the following probability is obtained:			
$P(A \cap B)$	$P(A \cap B) = P(A) \times P(B \text{ given } A)$			
	$=\frac{4}{52}\times\frac{3}{51}$			
	$=\frac{1}{13} \times \frac{1}{17}$			
	13 17 1			
	$={221}$			
	Therefore, the probability of drawing two aces in a row, given that the first card drawn is not replaced, is 1/221.			
events who	The formula you've applied, above, is used to determine the probability of compound events where there is a condition. The formula for determining conditional probability			
is given by				
	$P(A \cap B) = P(A) \times P(B \text{ given } A)$			
	$= P(A) \times P(B A)$			

E.g., The probability that Pat will go to U of T is 1/5. The probability that she will go to another university is 1/2. If Pat goes to U of T, the probability that she will get financial aid is 3/4. What is the probability that Pat will go to U of T and get financial aid?

Solution:

E.g., The probability that Pat will go to U of T is 1/5. The probability that she will go to another university is 1/2. If Pat goes to U of T, the probability that she will get financial aid is 3/4. What is the probability that Pat will go to U of T and get financial aid?

Solution:

$$P(go \cap aid) = P(go) \times P(aid | go)$$

$$= \frac{1}{5} \times \frac{3}{4}$$

$$= \frac{3}{20}$$

Therefore, Pat has a 3/20 chance of going to U of T and receiving financial aid.

Exit Problems_4.4_Cond Prob

1 A class is surveyed to determine whether they prefer mathematics or english. The table shows the results. State P(male|prefers english).

Gender

Males

Females

Mathematics English

8

Δ	9
_	17

B $\frac{9}{13}$

 $\mathbf{C} = \frac{9}{4}$

D none of the above

2 Determine the probability of drawing a spade and then a club from a regular deck of cards if the spade is *not returned* to the deck.

A
$$\frac{1}{16}$$

B
$$\frac{1}{2}$$

C
$$\frac{3}{51}$$

D
$$\frac{13}{204}$$

- 3 A pair of students is picked randomly from four students John, Sara, Adam, and Laura. Determine the probability that a girl will be chosen *given* that Adam has been chosen already.
 - **A** $\frac{1}{6}$
 - **B** $\frac{2}{3}$
 - **C** $\frac{1}{3}$
 - **D** $\frac{1}{2}$