\qquad Date: \qquad

1)	Calculate the future value of $\$ 1000$ invested for 3 years at 6% per annum, compounded quarterly.	For a 6\% annual interest rate, what rate of interest would you pay every quarter (i.e., compounded quarterly)?
Recall: $F V=P V(1+i)^{n}$, where $P V$ is the present value (or principal), periods.	If you have invested some money for 3 years, where the interest is compounded quarterly, how many compounding periods will there be?	

| Math Concept (Name?) | |
| :--- | :--- | :--- |

\qquad Date: \qquad

In this histogram, in what interval would you expect to find...
i) the mean?
ii) the median?
iii) the mode?

Why?

i) In this skewed histogram, in what interval would you expect to find the...
a) mean?
b) median?
c) mode?

Why?
ii) Provide an example of what this graphical display could be showing.

| Math Concept (Name?) | Solution (Solve it!) |
| :--- | ---: | ---: |
| | |
| | |

\qquad Date: \qquad
Details (What's important about how you solved the problem? What might be helpful for others to remember?)

Example (Provide another example and solve it)

MAP 4C Diagnostic: Are You Ready for This? Name: \qquad Date: \qquad

\qquad Date: \qquad

	To book a private room at a restaurant, it costs $\$ 60$. For each guest, it costs \$10. If you have a \$200 budget, how many guests can you invite?	Solve each equation.	
4)	a) $200=10 n+60$	b) $x+x+7+x+8=27$	c) $b^{2}=36$

Math Concept (Name?)	

\qquad Date: \qquad

\qquad Date: \qquad

\qquad Date: \qquad

	Y
6)	
	a

You fold a piece of paper in half, and then pass the folded sheet along to someone else in the class. They take the folded sheet and fold it in half, and then pass it along to someone else in the class. This process is repeated for the number of students in the class.

Write a power that represents the number of rectangles you'd expect to see if you unfolded the piece of paper following the class' participation. How many small rectangles are there?

NAME:
i) Evaluate the following power of 2: $\quad 2^{16}$
ii) Simplify the following expression to a single power of 2 . As it stands right now, there are three powers of 2 in the expression. Your answer is to have only one.

$$
\frac{2^{3} \times 2^{4}}{2^{7}}
$$

\qquad Date: \qquad

Last year, Mr. Stewart planted $\frac{1}{2}$ of his garden	Evaluate:		
7)	with potatoes. This year, only $\frac{2}{3}$ of last year's half was used for growing potatoes. This year, what fraction of Mr. Stewart's garden was used for growing potatoes?	a) $\frac{1}{2} \times \frac{1}{3}$	b) $\frac{1}{2} \times \frac{2}{3}$

\qquad Date: \qquad

8)	A car travels 78 km in 45 minutes. At this speed, how far would it travel in one hour?	Solve each proportion.

\qquad Date: \qquad

MAP 4C Diagnostic: Are You Ready for This? Name: \qquad Date: \qquad

\qquad Date: \qquad

| Classify the following graphs as linear, quadratic, exponential, or |
| :--- | :--- | :--- |
| other. | | Classify the following equations as linear, quadratic, exponential, |
| :--- |
| or other. |
| $10)$ |$y=2 x=2 \sin x$

\qquad Date: \qquad

11) $|$| if 1 yard $=3$ feet, then... |
| :--- |
| i) $y \operatorname{yrd}^{2}=?$ |
| ii) $1 y \operatorname{yard}^{3}=?$ |

Convert each measurement into feet and inches.
a) 12 inches
b) 18 inches
c) 98 inches

Math Concept (Name?)	Solution (Solve it!)	
Details (What's important about how you solved the problem? What might be helpful for others to remember?)	Example (Provide another example and solve it)	

\qquad Date: \qquad
Which of the following equations would you use to

solve for the indicated side length? \quad| a) $\sin 30^{0}=\frac{x}{10}$ |
| :--- |
| Label each side of the right triangle with one of the |
| following terms: opposite, adjacent, hypotenuse. |

Math Concept (Name?)	Solution (Solve it!)	
Details (What's important about how you solved the problem? What might be helpful for others to remember?)	Example (Provide another example and solve it)	

\qquad Date: \qquad

\qquad Date: \qquad

\qquad Date: \qquad
i) Sketch three rectangles-each one having a different perimeter-that each have an area of $48 \mathrm{~m}^{2}$.
ii) Which one has the minimum perimeter?
iii) Make a prediction as to what set of dimensions (length, width) will produce the smallest perimeter.

The graph below shows the perimeter of a rectangle, with area $48 \mathrm{~m}^{2}$, plotted against its changing width.
i) What width produces the minimum perimeter?
ii) For this width, calculate the length of the rectangle.
iii) What do you notice about these dimensions?

Perimeter vs. Width

Math Concept (Name?)	

\qquad Date: \qquad

| Details (What's important about how you solved the problem? What might |
| :--- | :--- | :--- |
| be helpful for others to remember?) |\quad Example (Provide another example and solve it) \quad E

\qquad Date: \qquad

\qquad Date: \qquad

