\qquad

MBF 3C Quiz: The Exponent Laws

Expectation

Through this assessment, you will have another opportunity to demonstrate your ability to ... demonstrate an understanding of exponents

1. True OR False? Correct each false statement in the space provided below each statement.
a. \qquad The base in the power $(-3)^{4}$ is (-3).
b. \qquad When multiplying powers of the same base (E.g., $2^{3} \times 2^{4}$), multiply the exponents.
c. The power $\left(\frac{1}{2}\right)^{3}$ means $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$.
d. When dividing powers of the same base (E.g., $2^{4} \div 2^{3}$), subtract the exponents.
e. \qquad When a power is raised to an exponent-E.g., $\left(2^{3}\right)^{4}-a d d$ the exponents.
2. Simplify by writing as a single power (E.g., $2^{2} \times 2^{4}=2^{6}$)
a. $10^{2} \times 10^{4}=$
b. $\left(2^{3}\right)^{2}=$
c. $\frac{7^{23}}{7^{21}}=$
3. Simplify by writing as a single power.
a. $\left(\frac{3^{4}}{3^{2}}\right)^{2}=$
b. $\frac{5^{7} \times 5^{4}}{5^{6} \times 5^{2}}=$
4. Read the Example and Solution that follow.

Example

The table shows the first 10 powers of 2 .

2^{1}	2^{2}	2^{3}	2^{4}	2^{5}	2^{6}	2^{7}	2^{8}	2^{9}	2^{10}
2	4	8	16	32	64	128	256	512	1024

Use the table to evaluate 32×16 without multiplying or dividing.
Solution

$$
\begin{aligned}
32 \times 16 & =2^{5} \times 2^{4} & & \text { Use the table to represent each number as a power of } 2 . \\
& =2^{9} & & \text { Use the exponent rules to simplify the expression. } \\
& =512 & & \text { Use the table to evaluate the power. }
\end{aligned}
$$

- Use the table below.
- Evaluate each expression WITHOUT multiplying or dividing. Show two lines in each of your solutions.
- Consider the Example and Solution that you read on the first page for guidance.

3^{1}	3^{2}	3^{3}	3^{4}	3^{5}	3^{6}
3	9	27	81	243	729

a. $3^{2} \times 3^{3}=$
b. $\frac{729}{81}=$
c. $\left(3^{2}\right)^{3}=$
5. Create AND and simplify your own expression that involves the use of each of the exponents laws.

Assessment:

KU	\#1 \& \#2	Demonstrates an understanding of the basic principles of the exponent laws	Still learning...	Almost there \odot	Got It!
KU	$\# 3$	Applies understanding to simplifying expressions effectively	Still learning...	Almost there \odot	Got It!
T/PS	$\# 4$	Identifies everything that's important to solving the problem	Still learning...	Almost there \odot	Got It!
T/PS	\#5	-Shows a complete solution process -Identifies everything that's important to solving the problem	Still learning...	Almost there \odot	Got It!
	-Shows full understanding of how important parts of the problem relate to one another				

Reflection: If you chose "Still learning..." and/or "Almost there ©", please describe your choice and what you will do/need to deepen your learning.

