Exponents: Diagnostic Assessment

1. When you multiply powers of the same base, add the exponents: $\left(5^{2}\right)\left(5^{4}\right)=5^{6}$
2. D
$(-3)^{6} \times(-3)^{4}=(-3)^{10}$
3. When you divide powers of the same base, subtract the exponents: $(-3)^{6} \div(-3)^{4}=(-3)^{10}$
4. When simplifying a "power of a power", you multiply the exponents: $\left(5^{2}\right)^{3}=5^{6}$
5. C
$\left(10^{4}\right)^{2}=(10)^{8}$
6. Each of these expressions is equal to 1. Any base raised to zero (as an exponent) is equal to 1.
$(-2)^{0}, 3^{0},(1 / 2)^{0}$
7. C

This is called the "Negative Exponent Rule".
$\frac{1}{2^{3}}=2^{-3}$
8. $y=3 x+2$ has an initial value of 2 (also known as the y intercept for any graph that passes through the y-axis).
9. The slope in this graph is $\frac{-1}{2}$ (see the diagram provided).

10. $P=2(7+10)=2(17)=34$
11. $12.25 \%=0.1225$
12. 7% of $\$ 200=0.07(\$ 200)=\$ 14$
13. 972.17
$950+950(0.04)\left(\frac{7}{12}\right)$
$=950+\frac{950(0.04)(7)}{12}$
$=950+22.17$
$=972.17$

