\qquad

Minds on Math: Geometric Distributions

Consider the following situations:
i) The probability of recovering after a particular type of operation is 0.5 . If 3 patients undergo this operation, what is the probability that 2 of them recover?
ii) The probability of recovering after a particular type of operation is 0.5 . What is the probability, for patients undergoing this operation, that 2 of them recover?

Problem:

Contrast the situations. Tell as much as you can with reference to what you currently know about probability distributions.
\square
\square

Take Action: Geometric Distributions

Solve each of the situations provided on the previous slide.
i) The probability of recovering after a particular type of operation is 0.5 . If 3 patients undergo this operation, what is the probability that 2 of them recover?

Solution:

As this situation can be modelled by a binomial distribution,

$$
\begin{aligned}
& P(X=r)=\binom{n}{r} p^{r} q^{n-r} \\
& P(X=2)=\binom{3}{2} 0.5^{2} 0.5^{1}
\end{aligned}
$$

$$
=3(0.5)^{3}
$$

$$
=0.375
$$

ii) The probability of recovering after a particular type of operation is 0.5 . What is the probability, for patients undergoing this operation, that 2 of them recover?

Solution:

- Recall that in this situation, the number of recoveries has not been specified. Therefore, w assume ar \square number of \square trials.
- The random variable, X, is defined as the number of trials before experiencing a success--c called the \qquad
- The trials must result inr failures, each having a probability of q of occurring and then one success. Because of this, \square need to be considered.
- The formula that defines this probability distribution--thGeometric Distribution-is as follows:

$$
P(X=r)=q^{r} p
$$

The expectationor expected value for this distribution is given by $E(X)=\frac{q}{p}$

E.g., If we must wait through cases of 0 and 1 failures, before experiencing successthen $r=1$.

$$
\therefore P(X=1)=(0.5)^{1}(0.5)
$$

$$
=0.25
$$

\qquad

$$
\begin{aligned}
& \text { Practice } \\
& \text { Using the geometric formulas provided, solve the following problem. }
\end{aligned}
$$

An assembly-line robot installs a DVD player into each mini-van produced on the line. For quality control, the players are tested to make sure that they are properly installed. The robot has a probability of malfunctioning of 0.2 .
a) What is the probability that a malfunction will occur on the 5th test?

b) What is the expected number of tests before a malfunction is found?

$$
E(X)=\frac{q}{p}=\frac{0.8}{0.2}=4
$$

Geometric Distribution.xls

