Growth_Decay_Factors_Lead into Exp Relations

Take Action #1

Remember your goals:

-identify "growth" and "decay" factors (for relationships that are "exponential")

-represent growth and decay using different forms

Consider the following data set:

	٠	1 +1		{
X	1	2	3 /	
У	2	6	18	
×3 ×3				

One of the later terms in the sequence of y-values is 4374.

Determine the previous two terms.

Let t_n be any term in the sequence, where n is a whole number. If $t_n = 4374$, then the previous two terms

are given by + n-1 and + n-2.

50,
$$+_{n-1} = \frac{t_n}{3}$$
; $t_{n-2} = \frac{t_{n-1}}{3}$
= 1458
= 1458

.. The previous two terms to 4324 are 486 and 1458.

Growth_Decay_Factors_Lead into Exp Relations

