MBF 3C **Assignment: Simple & Compound Interest**

Answer each of the following in the space provided. If you need them, required formulas are posted in the classroom. Show each step in the process.

Part A-Knowledge & Understanding

1. If you invest 1759.76 at 8% simple interest, how much will your investment be worth ...

Thu	
1 1	-
LKU	

Time	Amount of the investment
in 1 year?	A = \$1759.76 + \$1759.76(0.08)(1)
in 18 months? (Recall: Time is to be in years)	A= \$1759.76 + \$1759.76(0.08)(1.5) =

2. If you invest 1759.76 at 8% compound interest, compounded annually, how much will your investment be worth... () A = P(1+i)n

[ku]

[ku

Time	Amount of the investment
in 1 year?	A= \$1759.76(1.08) -
in 18 months? (Again, time in years)	A=\$1759.76 (1.08)1.5 =\$

3. When money is invested at 5% per year compounded semi-annually, for five years, in the formula $A = P(1 + i)^n$... (circle one)

a)
$$n = 5$$
 and $i = 0.05$

b)
$$n = 5$$
 and $i = 0.025$

d)
$$n = 10$$
 and $i = 0.05$

$$N = 2 \times 5$$

$$= 10$$

- 4. Consider the following scenario:

[Ku]

- \$13 000 is invested at 7% compounded semi-annually for 4 years.
- a) How many interest periods ($f \times t$) will there be over the term of this investment? $2 \times 4 = 8$
- b) What will be the interest rate per interest period, $\frac{i}{f}$ (as a decimal)? $\frac{0.07}{2} = 0.035$

1. Erik needs to borrow \$2000. Which loan should he take?

[APP]

- A: \$2000 for three years at 10% per year, compounded semi-annually
- B: \$2000 for three years at 9.2% per year, compounded quarterly

Justify your response.

A:

$$A = P(1 + \frac{i}{f})^{f \times 1}$$

= \$2000 (1 + 0.10)
= \$2000 (1.05)⁶
= \$2680.19

B:
$$A = $2000 (1 + 0.092)^3 \times 4$$

$$= $2000 (1.023)^{12}$$

$$= $2627.47$$

Bonus-Challenge

in Erik should go with Option B, as he'll be paying tess interest. In fact, hell pay \$ 52.72 less.

Answer a) or b) or both!

- a) About how long would it take \$1 to double if it earns 4% per year, compounded annually?

 about

 18 years.
- b) About how long would it take \$1 to double if it earns 4% per year, compounded semi-annually?

Show your thinking.

Example

a)
$$\# 2 = \# 1 (1.04)^n$$
 $2 = 1.04^n$
 $n = 1.04^n > 0.000$

$$\begin{array}{c|cccc}
2 &= 1.04^{9} \\
\hline
15 & 1.04^{9} &\geq 1.80 &\leq 2 & \text{(too small)} \\
17 & 1.04^{17} &= 1.95 &\leq 2 & \text{(too small)} \\
18 & 1.04^{18} &\geq 2.52 &\leq 2 & \text{(Close enough)}
\end{array}$$
The section:

REFLECTION: i) "Something I'm doing well with ... "
ii) "Something I'm OK with ... " ici) "Something I'm going to work on ... "

b)
$$i = 0.04 = 0.02$$
 rabout
 $f_{xt} = 2t$ 2t

$$#2 = #1 (1.02)$$

$$2 = 1.02$$

$$2 = 1.02$$

$$\frac{2}{1.02} > < = 2?$$

$$\frac{1.02}{1.02} > < = 2?$$

$$\frac{1.02}{1.02} = 1.81 < 2 (too small)$$

$$\frac{1.02}{1.02} = 1.96 < 2 (too small)$$

$$\frac{1.02}{1.02} = 1.96 < 2 (too small)$$