Success Criteria for Solving Math Problems

Success Criteria: Forming Our Assessment for Similar Triangles & the Pythagorean Theorem

Knowledge & Understanding

- How can you tell if someone has a good understanding of the concept of similar triangles?
 - o Can list the ratios of corresponding sides
 - o Can determine the scale factor
 - o Knows what is meant by "similarity"
 - o Can prove similarity
 - Showing that 3 pairs of corresponding angles are equal and/or
 - Showing that 3 pairs of ratios of corresponding sides are equal
- How can you tell if someone has a good understanding of the concept of the Pythagorean Theorem?
 - Knows when it can be used
 - Right triangles; two of 3 sides given
 - Knows how to use the formula for finding the hypotenuse
 - Adds the squares of the two, shorter side lengths
 - Knows how to use the formula for finding the length of a shorter side
 - Subtracts the square of a given short side from the square of the longest side

Communication

- General: What does good written, mathematical communication include?
 - o Key terms, appropriate symbols, and units (where appropriate)
 - Neatly-labeled diagrams and graphs
 - o Organized, thinking is clear (reasons given for steps in the process)
 - o A conclusion to word problems
- Specific: What does good written, mathematical communication for similar triangles and the Pythagorean Theorem include?
 - Similar triangles: lists the ratios of corresponding sides, sets up a proportion to solve for a missing side length (substitute known values), shows steps in solving, provides neatly-labelled diagrams (where necessary), and provides a conclusion to word problems
 - o Pythagorean Theorem: lists the formula to be used, shows substitution of given values, shows steps in solving the problem, provides neatly-labelled diagrams (where necessary), and provides a conclusion to word problems

Success Criteria for Solving Math Problems

Application

- How can you tell if someone is able to apply their understanding of similar triangles to a problem?
 - o Understands, without being directed, when problems involve similar triangles
 - o Can demonstrate the procedure for solving for missing side lengths using the scale factor or a proportion
- How can you tell if someone is able to apply their understanding of the Pythagorean Theorem to a problem?
 - o Understands, without being directed, when problems involve the Pythagorean Theorem
 - o Can demonstrate the procedure for solving for missing side lengths

Thinking, Inquiry and Problem Solving

- What do you do BEFORE solving a complex math problem (i.e., not your 'everyday', routine-type of problem)?
 - o Read and try to restate the problem in my own words (i.e., generally, in my head). It helps to talk about the problem with others.
 - o Identify given information and information that needs to be found
 - o Make a plan for solving the problem
 - Have I solved a similar problem before?
 - What are some of the possible strategies for solving these problems? Which one(s) might be best? (It helps to talk about the problem to clarify which strategies might be best.)
- What do you do DURING the solving of a complex math problem?
 - $\circ \quad \text{Use the strategy I've chosen} \\$
 - o Perform calculations
 - o Change my plan or revise my work if the strategy doesn't seem to be working
 - o Draw diagrams, use key words, and symbols to help communicate my solution
- What do you do AFTER you have solved a complex math problem?
 - o Check to see if my answer makes sense. It helps to describe how you got to the answer—i.e., as if you were going to explain it to someone else
 - o If I'm asked to *justify* my answer, is there another way that I can approach the problem?