Day 7_Theoretical Probability

Many probability problems relate to dice games.

E.g., 2. How many possible outcomes are there when rolling a pair of dice?

Note:

The chance of each of these coming up is $\frac{1}{6} = .167 = 16.7\%$

Let's apply this definition to an example.

E.g., 1. Determine the probability of drawing a heart, club, *or* spade from a 52-card deck of cards.

P(heart, club, or spade)

- = <u>number of successful outcomes</u> total number of possible outcomes
- <u>number of hearts, clubs, spades</u> total number of cards
- $= \frac{13 + 13 + 13}{52}$
- = 39 52

move shade click?

Let's apply this information to solving a dice problem.

E.g., 3. What is the probability of rolling a sum of 8 or greater on the roll of a pair of dice?

You might find the following graphics helpful with this type of problem:

Day 7_Theoretical Probability

E.g., 3. What is the probability of rolling a sum of 8 or greater on the roll of a pair of dice?

Pul

Pull tab, then click?

Next...Your Next Opportunity for Learning

- -Complete the follow-up problem set
- handout (paper & pencil)
- copy from Onenote "Content" folder into your own assignment folder

click on rectangles

What about the probability of things not occurring?

The complement of an event is...

Let's solve a problem using the complement of an event.

E.g., 4. Determine the probability of not rolling doubles using a pair of dice.

Calculation
P(non-doubles)
= 1 - P(doubles)
= $1 - \frac{6}{36}$ = $\frac{36}{36} - \frac{6}{36}$ = $\frac{30}{36}$ = $\frac{30}{36}$ = $\frac{5}{6}$ Pull tab, then reveal calculation